互联网可以使学生变成老师;互联网可以使名不见经传的人闻名天下;互联网可以结交志同道合的朋友;互联网可以让自己获取最多的知识,改变以往的传统的学习方式。下面分享一篇关于互联网的文章供大家阅读。
今天来说一下核磁共振是什么这方面的一些讯息,不少朋友对核磁共振是什么这方面的一些讯息颇感兴趣的,小编今天就整理了一些信息,希望对有需要的朋友有所帮助。
核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。
(资料图片)
核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。
核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查即:安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。不能把监护仪器、抢救器材等带进核磁共振检查室。另外,怀孕不到 3 个月的孕妇,最好也不要做核磁共振检查。
核磁共振
发现病变
核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期病变,已经成为肿瘤、心脏病及脑血管疾病早期筛查的利器。
据了解,由于金属会对外加磁场产生干扰,患者进行核磁共振检查前,必须把身体上的金属物全部拿掉。不能佩戴如手表、金属项链、假牙、金属纽扣、金属避孕环等磁性物品进行核磁共振检查。此外,戴心脏起搏器,体内有顺磁性金属植入物,如金属夹、支架、钢板和螺钉等,都不能进行磁共振成像检查。进行上腹部(如肝、胰、肾、肾上腺等)磁共振检查时必须空腹,但检查前可饮足量水,有利于胃与肝、脾的界限更清晰。
偶合常数
自旋偶合的量度称为自旋的偶合常数(coupling constant),用符号 J 表示,J 值的大小表示 了偶合作用的强弱 J 的左上方常标以数字,它表示两个偶合核之间相隔键的数目,J 的右下方 则标以其它信息。就其本质来看,偶合常数是质子自旋 裂分时的两个核磁共振能之差,它可以通过共振吸收的位置差别来体现,这在图谱上就是裂分峰 之间的距离。
偶合常数的大小与两个作用核之间的相对位置有关,随着相隔键数目的增加会很快减弱,一 般来讲,两个质子相隔少于或等于三个单键时可以发生偶合裂分,相隔三个以上单键时,偶合常 数趋于零。例如在丁酮中,Ha 与 Hb 之间相隔三个单键,因此它们之间可以发生偶合裂分,而 Ha 与 Hb 或 Hb 与 Hc 之间相隔三个以上的单键,它们之间的偶合作用极弱,也即偶合常数趋于零。但中间插人双键或三键的两个质子,可以发生远程偶合。
化学位移随外磁场的改变而改变。偶合常数与化学位移不同,它不随外磁场的改变而改变。因为自旋偶合产生于磁核之间的相互作用,是通过成键电子来传递的,并不涉及外磁场。因此, 当由化学位移形成的峰与偶合裂分峰不易区别时,可通过改变外磁场的方法来予以区别。
自旋偶合和自旋裂分
两张图谱分别是低分辨核磁共振仪和高分辨核磁共振仪所作的乙醛 (CH3CHO)的 PMR 图谱。对比这两张图谱可以发现,用低分辨核磁共振仪作的图谱,乙醛只有 两个单峰。在高分辨图谱中,得到的是二组峰,它们分别是二重峰、四重峰。乙醛在低分辨图谱 和高分辨图谱中峰数不等是因为在分子中,不仅核外的电子会对质子的共振吸收产生影响,邻近 质子之间也会因互相之间的作用影响对方的核磁共振吸收。并引起谱线增多。这种原子核之间的相互作用称为自旋-自旋偶合(spin-spin coupling),简称自旋偶合(spin coupling)。因自旋偶合而引起的谱线增多的现象称为自旋-自旋裂分,简称自旋裂分。
自旋耦合的起因
谱线裂分是怎样产生的?在外磁场的作用下,质子是会自旋的,自旋的质子会产生一个小的磁矩,通过成键价电子的传递,对邻近的质子产生影响。质子的自旋有两种取向,假如外界磁场感应强度为自旋时与外磁场取顺向排列的质子,使受它作用的邻近质子感受到的总磁感应 强度为 B0+B’,自旋时与外磁场取逆向排列的质子,使邻近的质子感受到的总磁感应强度为 B0-B’,因此当发生核磁共振时,一个质子发出的信号就分裂成了两个,这就是自旋裂分。一般只有相隔三个化学键之内的不等价的质子间才会发生自旋裂分的现象。
磁等价磁不等价性
在分子中,具有相同化学位移的核称为化学位移等价的核。分子中两相同原子处于相同的 化学环境时称为化学等价(chemical equivalence),化学等价的质子必然具有相同的化学位移,例 如 CH2Cl2 中的两个 1H 是化学等价的,它们的化学位移也是相同的。但具有相同化学位移的质 子未必都是化学等价的。判别分子中的质子是否化学等价,对于识谱是十分重要的,通常判别的依据是:分子中的质子,如果可通过对称操作或快速机制互换,它们是化学等价的。通过对称轴 旋转而能互换的质子叫等位质子(homotopic proton)。
等位质子在 任何环境中都是化学等价的。通过镜面对称操作能互换的质子叫对映异位质子(enantiotopic Pmton)。一组化学位移等价(chemical shift equivalence)的核,如对组外任何其它核的偶合常数彼此之间 也都相同,那么这组核就称为磁等价(magnetic equivalence)核或磁全同核。显然,磁等价的核一定是化学等价的,而化学等价的核不一定是磁等价的。
在判别分子中的质子是否化学等价时,下面几种情况要予以注意。
⑴与不对称碳原子相连的 CH2 上的两个质子是化学不等价的。不对称碳原子的这种影响可以延伸到更 远的质子上。
⑵在烯烃中,若双键上的一个碳连有两个相同的基团,另一个双键碳连有两个氢,则这两 个氢是化学等价的,与带有某些双键性质的单键相连的两 个质子,在单键旋转受阻的情况下,也能用同样的方法来判别它们的化学等价性。
⑶有些质子在某些条件下是化学不等价的,在另一些条件下是化学等价的。例如环己烷 上的 CH2,当分子的构象固定时,两个质子是化学不等价的,当构象迅速转换时,两个质子是化学等价的。只有化学不等价的质子才能显示出自旋偶合。
曲线和峰面积
核磁共振谱中,共振峰下面的面积与产生峰的质子数成正比,因此峰面积比即为不同类型质 子数目的相对比值,若知道整个分子中的质子数,即可从峰面积的比例关系算出各组磁等价质子 的具体数目。核磁共振仪用电子积分仪来测量峰的面积,在谱图上从低场到髙场用连续阶梯积 分曲线来表示。积分曲线的总髙度与分子中的总质子数目成正比,各个峰的阶梯曲线髙度与该 峰面积成正比,即与产生该吸收峰的质子数成正比。各个峰面积的相对 积分值也可以在谱图上直接用数字显示出来,如果将含一个质子的峰的面积指定为 1,则图谱上 的数字与质子的数目相符。
图谱的简化
一级图谱比较简单,可以直接根据上面所述几个方面来进行剖析,但解剖的顺序可以根据实 际情况灵活掌握。高级图谱的谱线一般都很复杂,难以直接剖析,为了便于解剖,最好在剖析前, 先采用合理的方法简化图谱 a 简化图谱常用的方法请参阅有关专著。
去偶处理
13C 的核磁共振原理与 1H 的核磁共振原理相同,因此 13C 与直接相连的氢核也会发生偶合作用。由于有机分子大都存在碳氢键,从而使裂分谱线彼此交叠,谱图变得复杂而难以辨认,只有通过去偶处理,才能使谱图变得清晰可辨。最常用的去偶法是质子(噪声)去偶法。该法采用双照射法,照射场(H2)的功率包括所有处于各种化学环境中氢的共振频率,因此能将 13C 与所有氧核的偶合作用消除,使只含 C、H、O、N 的普通有机化合物的 13C-NMR 谱图中,13C 的信号都变成单峰,即所有不等性的 13C 核都有自己的独立信号。因此,该法能识别分子中不等性的碳核。下图是丙酮的 13C 谱。(a)是偶合谱,(b)是质子去偶谱。在偶合谱中,羰基碳(δ=206.7)与六个氢发生二键偶合,裂分成七重峰,α碳(δ=30.7)与三个氢发生一键偶合,裂分成四重峰。在质子去偶谱中,羰基碳和α碳的裂分峰均变成了单峰。丙酮有两个相同的α碳和一个羰基碳,α碳的峰强度较羰基碳的峰强度大。质子(噪声)去偶碳谱就是通常说的碳谱,又称为宽带去偶碳谱,用 13C{H}表示。其它去偶的方 式还很多,有兴趣的读者请参阅有关专著。
以上就是关于核磁共振是什么对比这方面的一些信息了 小编整理的这些讯息希望对童鞋们有所帮助。